

Contents

Jacket Technical Specifications – page.1

Tubing Technical Data - page.2

Electrical Heat Trace Data - page.3

Electrical Heat Trace Crossover – page.4

Creating Your Bundle Part Number – page.5

PVC and PTE Coated Tubing - page.6

Bundle Accessories - page.7

DKC Tube Bundles

DKC provides a comprehensive range of pre-insulated tubing bundles, designed to accommodate various industrial applications. Our offerings range from basic single-tube insulation solutions to advanced configurations incorporating electrical heat tracing and multiple process tubes. If your specific requirements are not listed in this brochure, please contact your local DK-Lok Canada branch for assistance.

Pre-insulated tubing bundles are engineered for the efficient transport of liquids and gases across diverse applications. For example, our bundles can maintain a jacket surface temperature of 60°C or lower in an ambient environment of 32°C with wind speeds of 5 mph, while safely conveying 232°C saturated steam.

Technical Info for the Jacket

- Hardness, Shore A 90
- Minimum service temperature –40°C
- Minimum installation temperature -40°C
- UL94 Flame V0 to V2
- Maximum temperature 105°C
- UV resistant
- Non-wicking inorganic fibrous glass thermal insulation

Tubing Technical Data

DKC pre-insulated tubing (PIT) bundles are manufactured using the same high-quality tubing that we stock and distribute. Our tubing adheres to ASTM A269/A213 standards, ensuring reliability and performance in demanding applications. The chart below provides pressure ratings for reference.

We offer PIT in ¼", 3/8", ½", and ¾" tubing sizes to meet a variety of system requirements.

Stainless Steel Tubing

Table 2. Fractional Seamless Stainless Steel Tubing

Fully annealed austenitic Type 304 or 316 seamless tubing ASTM A269 or ASTM A213, or equivalent. Tubing to be free from scratches, draw mark, dirt, dust, flat spots, and suitable for bending and flaring. Recommended hardness:90 HRB or less.

OD in.	Wall Thickness (in.)														
	0.012	0.014	0.016	0.02	0.028	0.035	0.049	0.065	0.083	0.095	0.109	0.12	0.134	0.156	0.188
1/16	6800	8100	9400	12000											
1/8					8500	10900									
3/16					5400	7000	10200								
1/4					4000	5100	7500	10200	0 Working Pressure in psig						
5/16						4000	5800	8000							
3/8	1					3300	4800	6500	7500						
1/2						2400	3500	4700	6200						
5/8							2900	4000	5200	6000					
3/4							2400	3300	4200	4900	5800				
7/8							2000	2800	3600	4200	4800				
1								2400	3100	3600	4200	4700			
1 1/4									2400	2800	3300	3600	4100	4900	
1 1/2										2300	2700	3000	3400	4000	490
2											2000	2200	2500	2900	3600

Electrical Heat Trace Technical Data

Electrical Heat trace options are shown below. For a full detailed break down please see our website for our EHT brochure.

Heat Trace Brochure

All DKC Heat Trace comes in 120v, or 240v. We have four wire options depending on temperature requirements.

- 1. TRCR Low Temp (65°C 85°C)
- 2. TPCR Medium Temp (110°C 135°C)
- TSCR High Temp (150°C 200°C)
- 4. TUCR Ultra High Temp (210°C - 260°C)

Crossover for EHT

To assist our customers who are currently buying their EHT from other vendors; we have provided a cross over reference guide.

Brand	Low Temp	Medium Temp	High Temp	Ultra High Temp	
DK-Lok Canada	TRCR	TPCR	TSCR	TUCR	
	(65C, 85C)	(110C, 135C)	(15OC, 200C)	(210C, 260C)	
Thermon	BSX	KSX	HTSX	VSX	
	(65C, 85C)	(121C, 121C)	(150C, 250C)	(200C, 250C)	
Raychem	BTV	QTVR	KTV	HTV	
	(65C, 85C)	(110C, 110C)	(150C, 250C)	(205C, 260C)	
Chromalox	HSRL	SRP	SRME	N/A	
	(65C, 85C)	(110C,135C)	(150C, 215C)		

Creating your tube bundle part number

Select all applicable options required to generate a part number. If a specific option is not needed, you may omit it.

For example, if the bundle does not require heat tracing, you can skip the following options:

Type of wire, Wattage of Trace, Voltage

Size of Tubing

 $\frac{1}{4} = 4$

3/8 = 6

 $\frac{1}{2} = 8$

 $\frac{3}{4} = 12$

Tubing Material

316 Stainless = S

Type of bundle

1 tube = 1

2 tube = 2

3 tube = 3

.049 = 049

PIT-TL6-1-049-R52-P-250-SS

PIT, 3/8", 1-bundle, .049 wall thickness, TRCR wire, 5 watt/240v, PVC jacket, 250', seamless 316 stainless steel

Type of Tubing

Seamless = S

Welded = W

Thickness of 1st tube

.035 = 035

.065 = 065

Spool Length

Enter length in feet

Thickness of 2nd

tube

.035 = 035

0.40	Thickness of 3 rd	Тур		
.049 = 049	<u>tube</u>	TRC		
.065 = 065	.035 = 035	TPC		
	.049 = 049	TSC		
	.065 = 065	TUC		

The state of the s
Sint di
A STATE OF THE PARTY OF THE PAR

Jacket **Material**

PVC = P

Thickness of 3 rd	Type of Wire	Wattage of	Voltage of
<u>tube</u>	TRCR = R	Trace	<u>Trace</u>
.035 = 035	TPCR = P	5w = 5	120v = 1
.049 = 049	TSCR = S	8w = 8	240v = 2
.065 = 065	TUCR = U	10w = 10	
		12w = 12	

PVC and PTE Coated Tubing

For applications where insulation is not required but a protective jacket is still necessary, we offer coated tubing solutions.

Specifications:

- -Tubing surface OD Ra = .8
- -Standard ID Ra = .6, with .2 Ra achievable upon request.
- -Single core
- -Multi-core bundle
- -PVC or PTE coating

Bundle Accessories

Boot end kits

We have option depending on how many tubes are in your bundle. Seal-Tight end boot, single, double, triple.

- 1- Expanded I.D.: 2.16" (55mm) Recovered I.D.: 0.36" (9.2mm) Length: 5.9" (150mm)
- 2- suitable for cable between 150-240mm²
- 3- suitable for cable between 70-120mm²

Cable Entry Seals:

Min. bundle outer diameter: 35mm Max. bundle outer diameter: 45mm Max. wall thickness: 25mm

RVT End Sealant

100ml/pc, Working temperature: -45~205°C

